

Prepare-se: O futuro já começou!

...Nós somos o futuro!

A Tecnologia Que a Natureza Exige!

Difusão do uso de Fluidos Alternativos em Sistemas de Refrigeração e Ar Condicionado

Brasília 16 de Junho, 2011

MINISTÉRIO DO MEIO AMBIENTE

Utilização do CO₂ em sistemas de refrigeração para supermercados

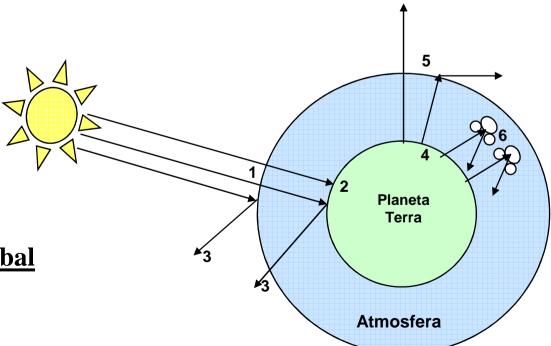
Brasília 16 de Junho, 2011

Eng^o Alessandro da Silva alessandro.silva@bitzer.com.br Tel.(11) 4617-9138 / Cel.(11) 9196-1808 www.bitzer.com.br

Programação

- ☐ Tópico 1: Introdução
- ☐ Tópico 2: Características e Propriedades do R744 (CO₂)
- ☐ Tópico 3: Segurança dos Sistemas Aplicados com R744 (CO₂)
- ☐ Tópico 4: Sistemas de Refrigeração com R744 (CO₂)
- ☐ Tópico 5: Componentes do Sistema com R744 (CO₂)
- ☐ Tópico 6: Procedimentos de Comissionamento, Serviço e Manutenção com R744 (CO₂)
- ☐ Tópico 7: Um assunto importante ...

Introdução ao R744 (CO₂)



Quais as razões para utilizar os refrigerantes alternativos?

As razões para a substituição dos CFC/HCFC em favor dos refrigerantes ecologicamente correto, especialmente os refrigerantes naturais, são:

☐ Eliminar os refrigerantes que destroem a **Camada de Ozônio**

☐ Eliminar os refrigerantes que contribuem para o Aquecimento Global (Efeito Estufa)

Quais são os refrigerantes CFC's & HCFC's?

> CFC : Clorofluorcarbono

Composto químico de alto poder de destruição da Camada de Ozônio (ODP), pois contém Cloro e Fluor e são poderosos Gases Estufa

Exemplo: **R11**, **R12**, **R13** (ODP: 1,0; 0,82; e 1,0)

> HCFC: Hidroclorofluorcarbono

Composto químico de menor destruição da Camada de Ozônio (ODP), pois contém Cloro, Fluor e Hidrogênio e são poderosos Gases Estufa

Exemplo: **R22**, **R123** (ODP: 0,05 e 0,014)

Quais são os refrigerantes HFC's?

> HFC: Hidrofluorcarbono

Livre de cloro, composto químico com zero de ODP, pois possui apenas Hidrogênio e Fluor e são poderosos Gases Estufa

Exemplos: R134a, R404A, R407C, R410A, R507 (ODP: 0,0)

Quais são os refrigerantes **NATURAIS**?

> NATURAIS: Hidrocarbonetos, Amônia e Dióxido de Carbono

Livre de Cloro, compostos químicos com Zero ODP, pois possuem somente Hidrogênio, Carbono, Oxigênio e Nitrogênio (ODP: 0,0), com baixo ou nenhum efeito estufa.

Exemplos: **R290**, **R600a**, **R717**, **R744**

Aplicações dos refrigerantes NATURAIS

□ **R600a**: Refrigeradores dométicos (no momento)

□ **R290** : Refrigeração comercial menor porte (no momento)

□ **R717** : Refrigeração industrial

□ R744 : Refrigeração comercial e industrial

Qual é o elemento químico dos CFC's & HCFC's que causa a destuição do Ozônio?

□ Cloro (Cl)

A data para eliminação dos HCFC's em favor dos refrigerantes ecologicamente corretos é:

1974 > 1987 > 1995 > 1996 >>>> 2004 >>>> 2010 >>>> 2015 >>>> 2020

Produção | Reduções na produção em

Congelamento | 35% 65% 90% 100%

1 Jan 2004 Eliminação dos equip. com R22 nos países EU

- ☐ Destruição do Ozônio significa aumentar a radiação UV que atinge a Terra!
- ☐ Os gases estufa causam elevação na temperatura média da Terra!

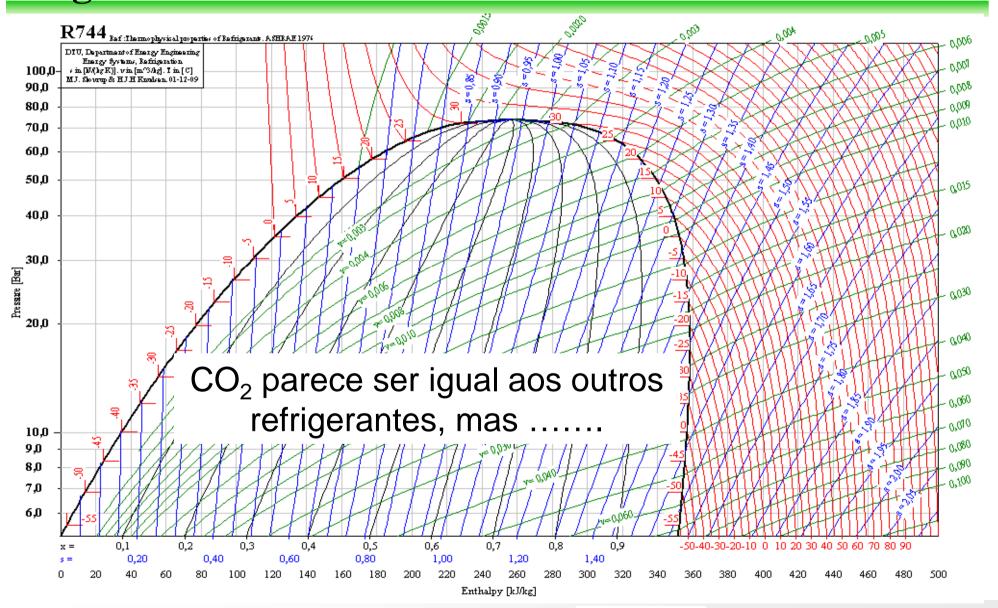
Comparação do Impacto Ambiental dos Refrigerantes

N° Refrigerante		Fórmula Química ou Mistura de ODP Refrigerantes		GWP 100 anos	Grupo de Segurança (Ashrae)
R22	Clorodifluorometano	CHClF ₂	0,05	1500	A1
R404A	Mistura HFC	R125/R134a/R143a 0		3260	A1/A1
R507A	Mistura HFC	R125/R143a	0	3300	A1
R290	Propano	C ₃ H ₈	0	3	A3
R717	Amônia	NH ₃	0	0	B2
R744 Dióxido de Carbono		CO ₂	0	1	A1

Tópico 2: Fundamentos do Dióxido de Carbono

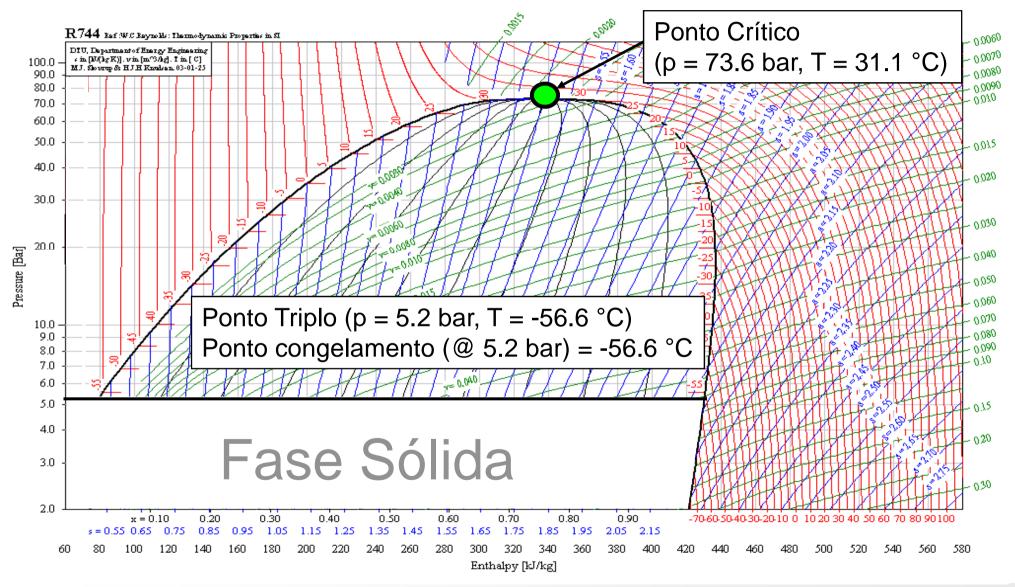
Características e Propriedades do Refrigerante R744 (CO₂)

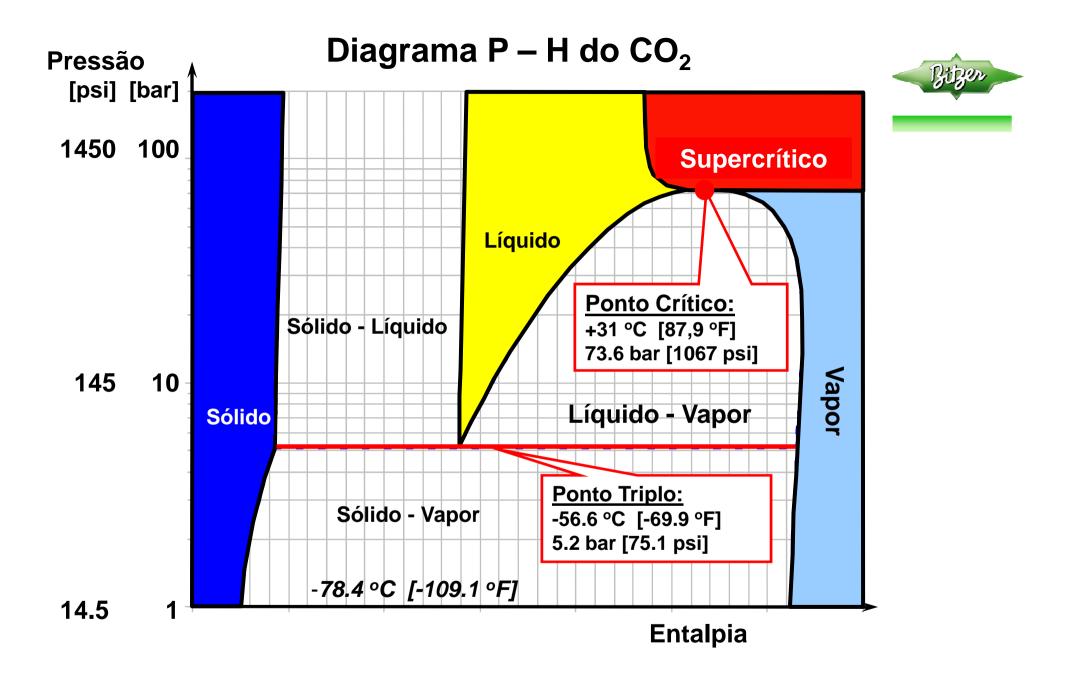
Tópico 2: Fundamentos do Dióxido de Carbono Características e Propriedades


CO_2

(Dióxido de Carbono - R744)

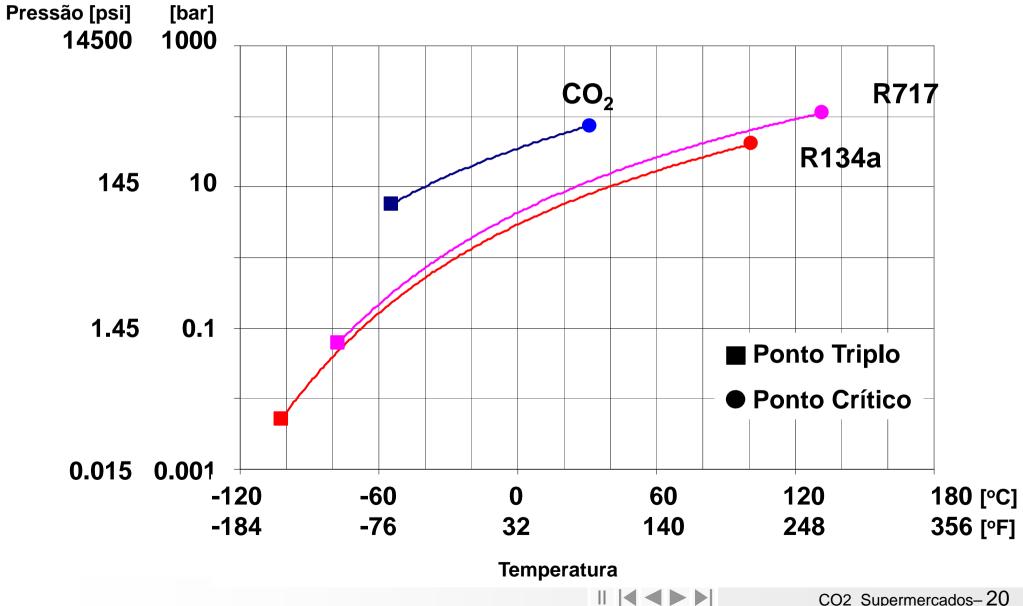
- ☐ Substância 100% natural
- ☐ Refrigerante classificado como <u>não-tóxico</u> e <u>não- inflamável</u>
- ☐ Fonte disponível na atmosfera
- ☐ Concentração no ar atmosférico é de aprox. 0,04% (volume) = 400ppm
- ☐ Refrigerante puro não há temperatura glide


Tópico 2: Fundamentos do Dióxido de Carbono Diagrama P - H

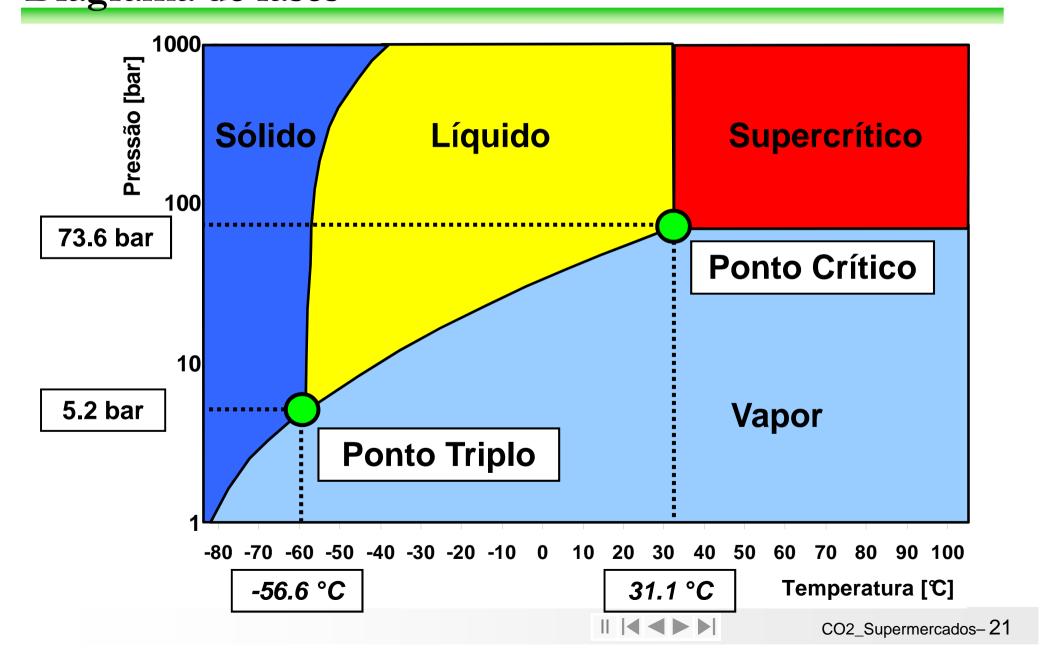


Tópico 2: Fundamentos do Dióxido de Carbono Diagrama P - H

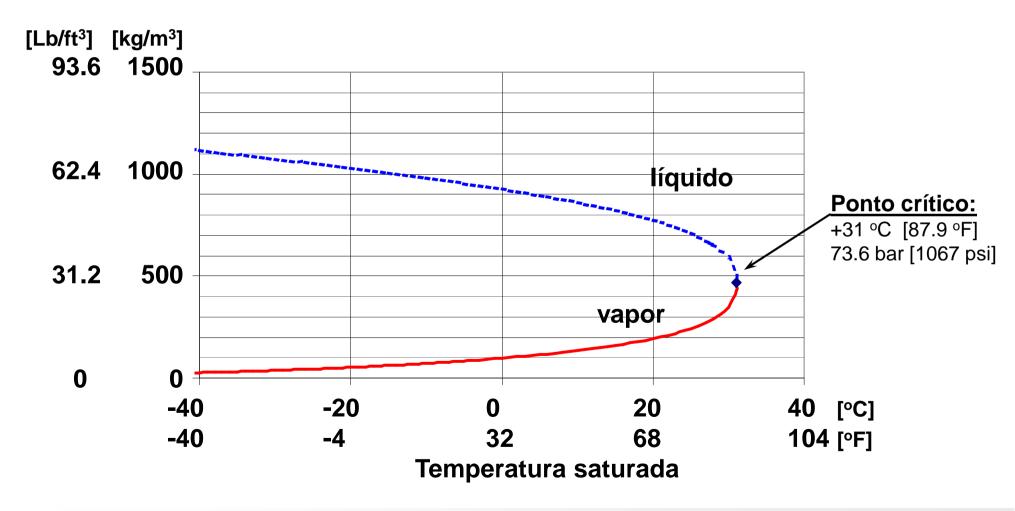
Tópico 2: Fundamentos do Dióxido de Carbono Definição do Ponto Triplo e Ponto Crítico



- □ O Ponto Triplo de uma substância é o valor de pressão e temperatura onde os três estados (sólido, líquido e vapor) co-existem neste ponto.
 - O Ponto Triplo do CO2 é alto (-56.6°C)
 - Os refrigerantes mais utilizados têm suas temperaturas no Ponto Triplo variando de –77,7°C (R717) e abaixo...
- □ O Ponto Crítico de um refrigerante é aquela temperatura e/ou pressão acima da qual o mesmo não poderá mais ser liquefeito.
 - A Temperatura Crítica do CO2 é baixa (31.1°C)
 - Os refrigerantes mais utilizados têm suas Temperaturas Críticas no intervalo de 72°C (R404A) a 132,4°C (R717)


Tópico 2: Fundamentos do Dióxido de Carbono Diagrama P - T

Tópico 2: Fundamentos do Dióxido de Carbono Diagrama de fases



Tópico 2: Fundamentos do Dióxido de Carbono Densidade do CO₂ líquido / vapor

Densidade

Tópico 2: Fundamentos do Dióxido de Carbono Tabela P-T

			۰C	kPa	PSI		
	xemplo da Relação	Ponto Crítico	-56.57	417	60		
	e compressão:		-50	582	84		
I	e= -30°; Tc= -10°C		-45	732	106		
			-40	899	131		
			-35	1102	160		
	Pressão Sucção		-30	1327	193	P. manomêtrica	
			-25	1582	230		Taya Camprasaão
			-20	1869	271		Taxa Compressão =
			-15	2190	318		1,85
	Pressão Descarga		-10	2548	370	P. manomêtrica	
			-5	2945	427		
			0	3384	491		Menor desgaste mecânico do
			5	3867	561		compressor e,
			10	4399	638		consequentemente
			15	4985	723		maior vida útil!
			20	5625	816		
			25	6331	919		
			31.06	7281	1057	Temp Crítica	

Tópico 3: Segurança

Segurança dos Sistemas Aplicados com R744 (CO₂)

Segurança dos Sistemas Aplicados com R744 CO₂

Questões de segurança

Os refrigerantes são divididos em três grupos de acordo com a reação provocada no corpo humano:

- ☐ Aqueles com cheiro forte e efeito tóxico agudo:
- ✓ Amônia R717 (NH₃): Dióxido de Enxofre R764 (SO₂); Clorometano R40 (CH₃Cl) (Cloreto de Metila)
- ☐ Aqueles que não apresentam nenhum cheiro particular ou efeito tóxico a curto prazo:
- ✓ HFC's, HC's, Nitrogênio (N₂)
- ☐ Aqueles que estão envolvidos diretamente no processo respiratório:
- ✓ Ar R729, Dióxido de Carbono R744 (CO₂)

Segurança dos Sistemas Aplicados com R744 CO₂

Questões de segurança

☐ O importante é saber que todos estes gases poderão matar uma pessoa pela simple
falta de oxigênio através do deslocamento do ar .
☐ Se um gás "asfixiante" for introduzido mecanicamente dentro de um ambiente fechado, imediatamente o ar será deslocado e forçado a sair na mesma proporção con que este gás está sendo forçado a entrar nesse ambiente.
☐ Um sistema de condicionamento de ar com vazamento no evaporador introduziria por exemplo, o R22 no ambiente e, conseqüentemente com o aumento da pressão interna, o ar também seria forçado a sair desse ambiente através das pequenas aberturas em torno das portas, janelas, etc.

Segurança dos Sistemas Aplicados com R744 CO₂

Efeitos da redução do Oxigênio no corpo humano

- □ 21% atmosfera normal
- ☐ 16% respiração forçada
- ☐ 14% locomoção forçada
- □ 12% pensamento confuso
- □ 10% náusea, vomito, colapso
- □ 8% perda da consciência
- □ 6% falha no aparelho respiratório

A atmosfera da Terra, por volume, consiste em aproximadamente **79,1% de Nitrogênio**, **20,9% de Oxigênio**, **0,036% de Dióxido de Carbono** (**360ppm**) e pequenas quantidades de outros gases.

Segurança dos Sistemas Aplicados com R744 CO_2

Questões de segurança

☐ O Dióxido de Carbono não é somente um gás asfixiante, mas também um agente narcótico; sendo o mais potente vasodilatador cerebral já conhecido.

(<u>vasodilatador</u>: é uma substância que aumenta o tamanho dos vasos sanguíneos do corpo humano, alongando suas fibras musculares e, conseqüentemente reduz a pressão sanguínea).

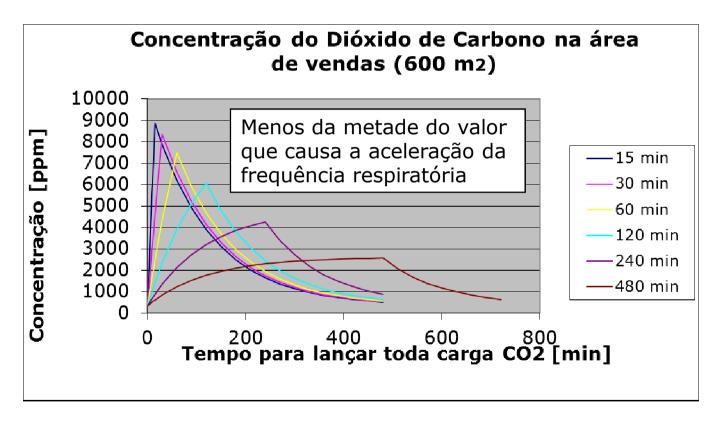
Segurança dos Sistemas Aplicados com R744 CO₂

A concentração de CO₂ no ar atmosférico que respiramos é de 0,036%, se aumentarmos esse nível de concentração, poderão ocorrer os seguintes fatores:

□ 2% = 50% de aumento da frequência respitarória
□ 3% = 100% de aumento no ritmo respiratório, limite de 10min para curta exposição
□ 5% = 300% de aumento no ritmo respiratório, depois de uma hora pode aparecer dor de cabeça e suor. (É tolerado pela maioria das pessoas, porém representa uma carga física)
□ 8% = Limite de exposição por curto período de tempo
□ 8-10% = Dor de cabeça depois de 10 ou 15 minutos. Enjôos, vertigem, zumbido nos ouvidos, elevada taxa de batimentos cardíaco, excitação e vômitos.
□ 10-18% = Depois de uma exposição curta aparecem ataques epiléticos, perda da consciência e choque (as vítimas se recuperam rapidamente com o ar fresco)
□ 18-20% = Sintomas similares aos de uma trombose..."coma" seguido de "morte"!

(A trombose é o resultado da formação de coágulos, ou trombos, quando algum fator lesa a parede dos vasos sangüíneos ou faz o sangue estagnar no seu seu interior.)

Tópico 3: Segurança dos Sistemas Aplicados com R744 CO₂



Refrigerante	Código HAZCHEM	Ponto Ebulição (ºC)	Código Segurança Ashrae	PERIGO	TLV / TWA (ppm)
R744	2RE	-78,5	A1	Asfixiante	5000
R410A	2RE	-52,2	A1	Asfixiante em altas concentrações	1000
R404A	2RE	-46,8	A1	Asfixiante em altas concentrações	1000
R507	2RE	-46,7	A1	Asfixiante em altas concentrações	1000
R407C	2RE	-43,0	A1	Asfixiante em altas concentrações	1000
R22	2RE	-40,7	A1	Asfixiante em altas concentrações	1000
R134a	2RE	-26,2	A1	Asfixiante em altas concentrações	1000
R717	2RE	-33,4	B2	Tóxico por inalação	25

Segurança dos Sistemas Aplicados com R744 CO₂

TOXIDADE

- > Potencial de risco somente na sala de máquina (detector de vazamento)
- Risco muito baixo na área de vendas

Segurança dos Sistemas Aplicados com R744 CO_2

Equipamentos de Proteção Individual

\square Ao trabalhar com equipamento que utiliza o CO_2 , devemos ter uma mudança de cultura na maneira pela qual lidamos com os equipamentos de proteção individual.
☐ Tem sido por muito tempo uma prática aceitada pelo pessoal envolvido com o setor de refrigeração, principalmente os que trabalham no campo, de usar <u>qualquer tipo de roupa</u> durante o trabalho envolvendo os refrigerantes Fluorocarbonos.
\square Para se proteger dos ferimentos graves, devemos então seguir as recomendações da Segurança do Trabalho e Saúde Ocupacional ao trabalhar com os sistemas de refrigeração que utilizam o CO_2 como fluido refrigerante.
☐ As <u>queimaduras criogênicas</u> de baixa temperatura ocorrerão na pele em contato com o Dióxido de Carbono líquido.

Segurança dos Sistemas Aplicados com R744 CO₂

EPI's necessários para trabalhar com o CO₂:

☐ Óculos de segurança

- √ Óculos de segurança com proteção lateral
- ✓ Utilizar lentes específicas durante o trabalho de solda oxiacetilênica e processos correlatados

☐ Calçados de segurança

- ✓ Botas de segurança de proteção ocupacional (a prova de água)
- ✓ Sapatos de segurança de biqueira de aço para manuseio de cilindros CO₂

☐ Roupas de segurança

- ✓ Calça cumprida de algodão
- ✓ Camisa de manga longa de algodão
- ✓ Macacão com manga longa (opcional)
- ✓ Jaqueta de manga longa para proteção do frio (vazamento de CO₂)

☐ Luvas de proteção

✓ Luvas de raspa de couro com palmas reforçadas

Tópico 3: Segurança dos Sistemas Aplicados com R744 CO₂

Comparação das Densidades dos refrigerantes

Refrigerante	Nome Comum	Massa Mol g/mol	Densidade Vapor @ 15°C@1atm (101,3kPa.abs) kg/m ³	Densidade Relativa Ar = 1
R717	Amônia – NH ₃	17	0,72	0,595
R729	Ar	29	1,21	1,00
R744	Dióxido de Carbono - CO ₂	44	1,85	1,53
R290	Propano – C ₃ H ₈	44	1,87	1,55
R600a	Isobutano - C ₄ H ₁₀	58	2,5	2,07
R410A	R32/R125	72,6	3,07	2,54
R407C	R32/R125/R134a	86,2	3,66	3,03
R22	Clorodifluorometano - CHClF ₂	86,5	3,67	3,03
R404A	R143a/R125/R134a	97,6	4,15	3,43
R134a	Tetrafluoroetano - CH ₂ FCF ₃	102	4,36	3,61
R12	Diclorodifluorometano - CCl ₂ F ₂	121	5,16	4,27

Segurança dos Sistemas Aplicados com R744 CO₂

Dispositivos e Métodos de Proteção Individual

- □ Todas as salas de máquinas e outras áreas de trabalho que contenham gases industriais necessitam ser bem ventiladas, incluindo o ar que também precisa ser renovado regularmente.
- Devido à densidade do CO_2 e dos possíveis efeitos letais de um vazamento, <u>os</u> <u>monitores de CO_2 </u> deverão ser instalados em todas as áreas onde o vapor de CO_2 poderá acumular em grandes quantidades, ou afetar a equipe de funcionários do estabelecimento ou o público em geral.

Segurança dos Sistemas Aplicados com R744 CO₂

Os monitores de CO₂ deverão ser instalados nas seguintes áreas:

- ✓ Salas de máquinas
- ✓ Câmaras de congelados
- ✓ Câmaras de resfriados
- ✓ Câmaras de "Walk-in cooler"
- ✓ Ilhas de congelados
- ✓ Balcões de laticínios
- ✓ Qualquer gabinete ou balcão refrigerado que utiliza o CO₂ como refrigerante

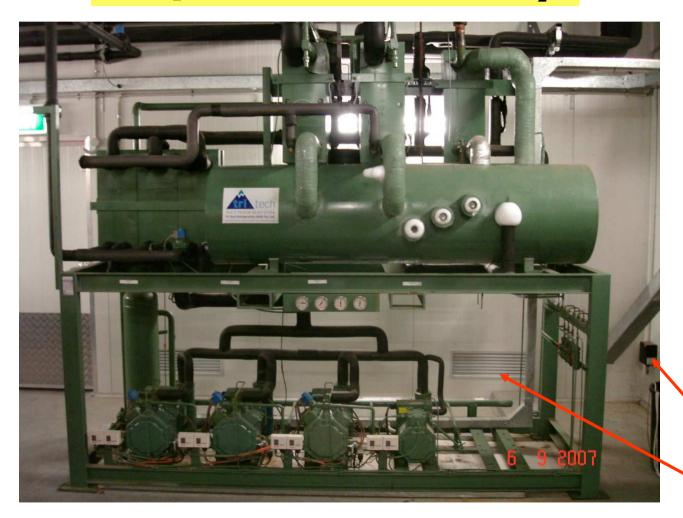
Os monitores de CO₂ são instalados para <u>acionar</u> o sistema de exaustão de ar e/ou <u>alertar</u> a equipe de funcionários / manutenção / gerência do estabelecimento em caso de vazamento de CO₂, o pessoal de manutenção deverá tomar as ações necessárias para conter o vazamento do sistema.

Tópico 3:

Segurança dos Sistemas Aplicados com R744 CO₂

Sensores de Detecção de CO₂

 \square O sensor de detecção de CO_2 (monitor) deverá ser instalado o mais próximo possível do piso, pois em caso de vazamento, o CO_2 irá acumular no ponto mais baixo do ambiente.


- ✓ O sensor de CO_2 tem uma faixa de 1 10.000 ppm
- ✓ O sensor de CO₂ é do tipo infravermelho
- ✓ Os limites de alarme do sensor de CO₂ deverão ser de 500 9.000 ppm
- ✓ O tempo de resposta do sensor de CO₂ deverá ser de 0 segundos

Tópico 3:

Segurança dos Sistemas Aplicados com R744 CO₂

Exemplo de monitoramento de CO₂

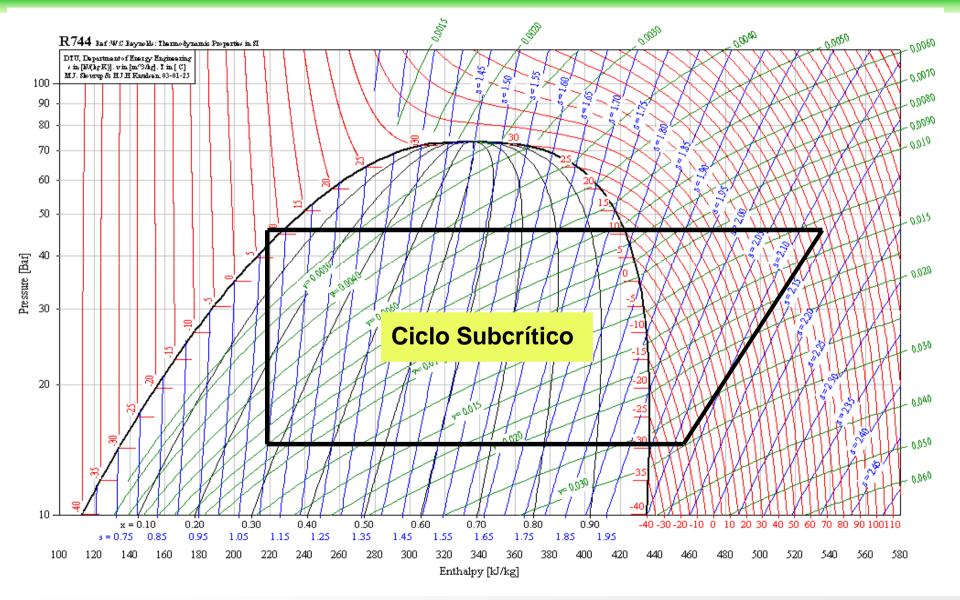
Sensor de CO₂

Sistema de exaustão de ar

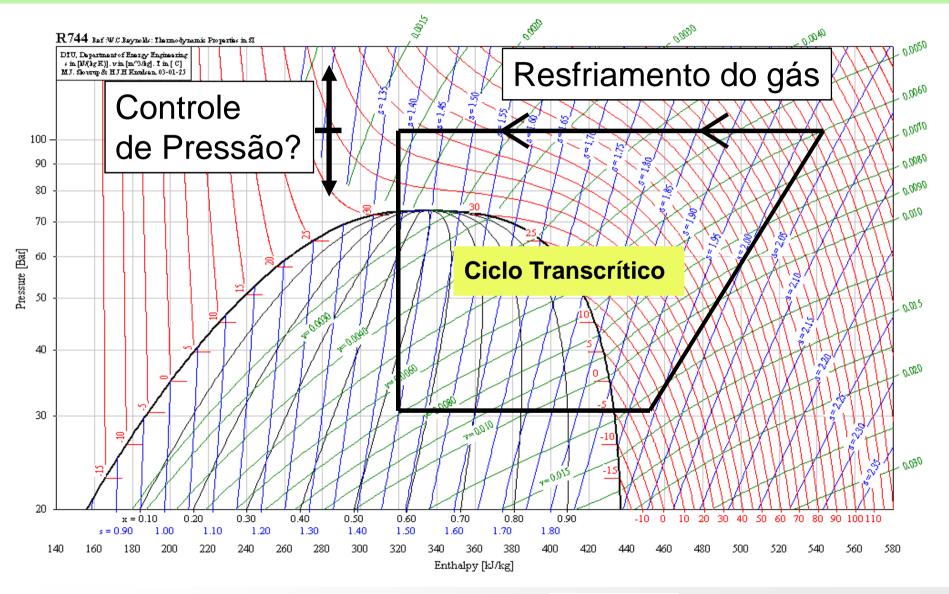
Tópico 3:

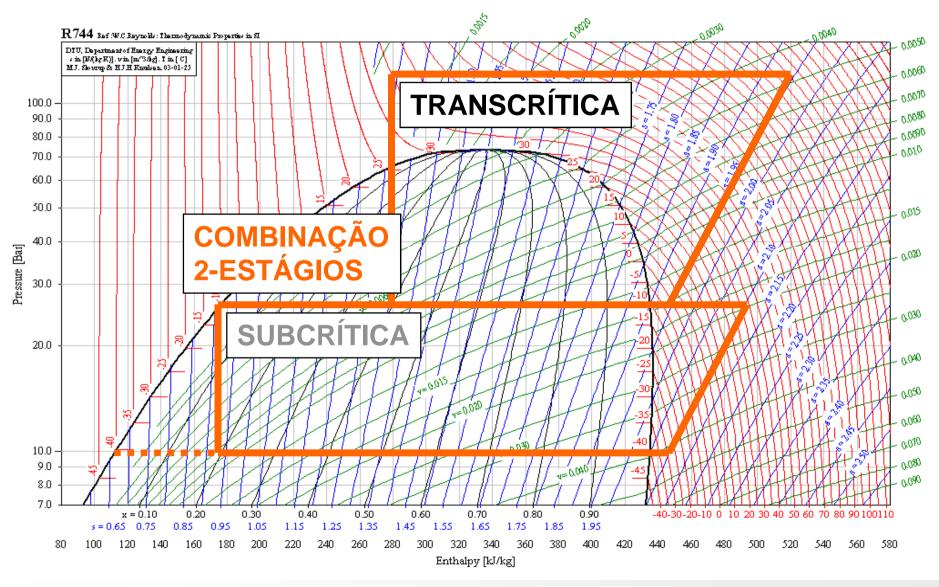
Segurança dos Sistemas Aplicados com R744 CO₂

Recomenda-se também que o <u>técnico responsável</u> pela manutenção tenha sempre em mãos um <u>detector portátil</u> para monitoramento do nível de CO₂ nos ambientes.

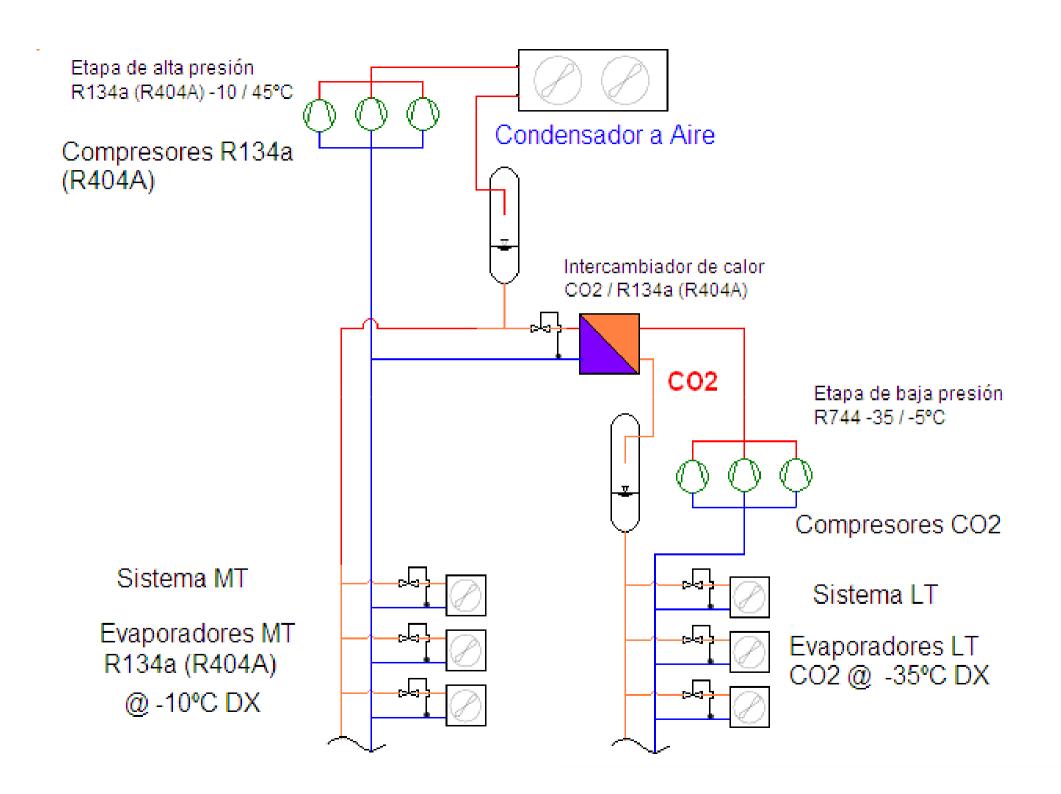


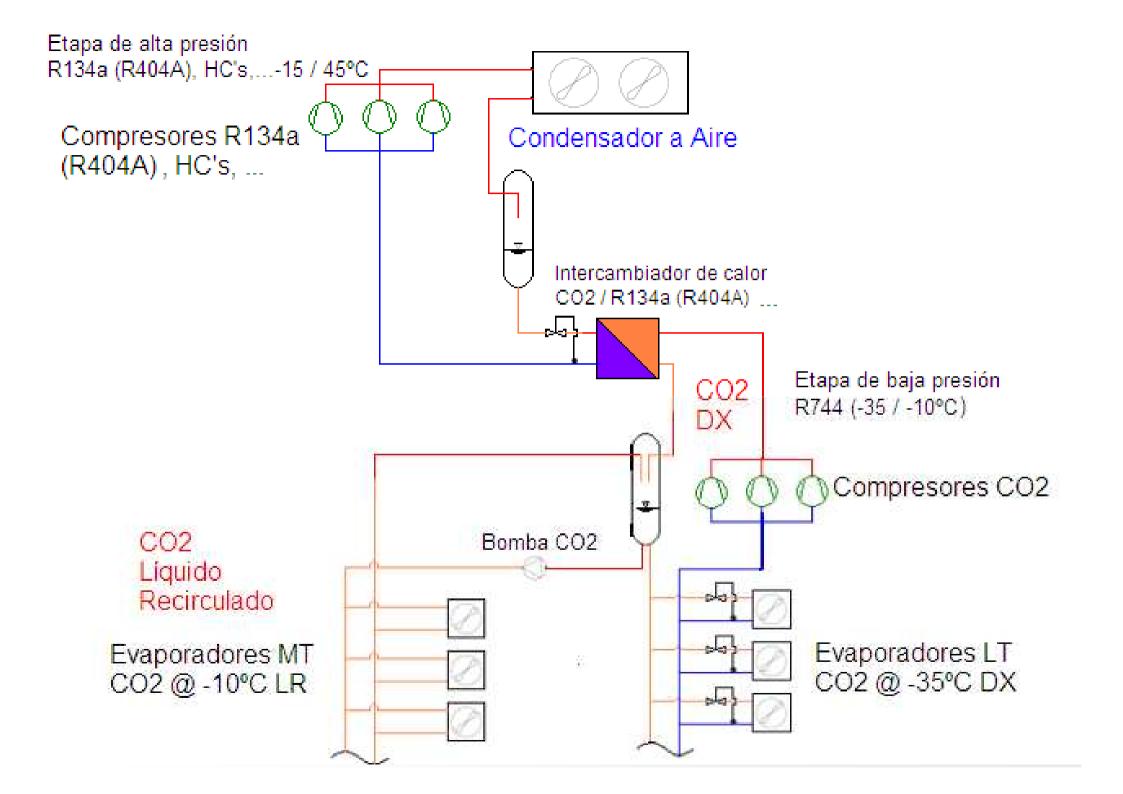
Sistemas de Refrigeração com R744 (CO₂)

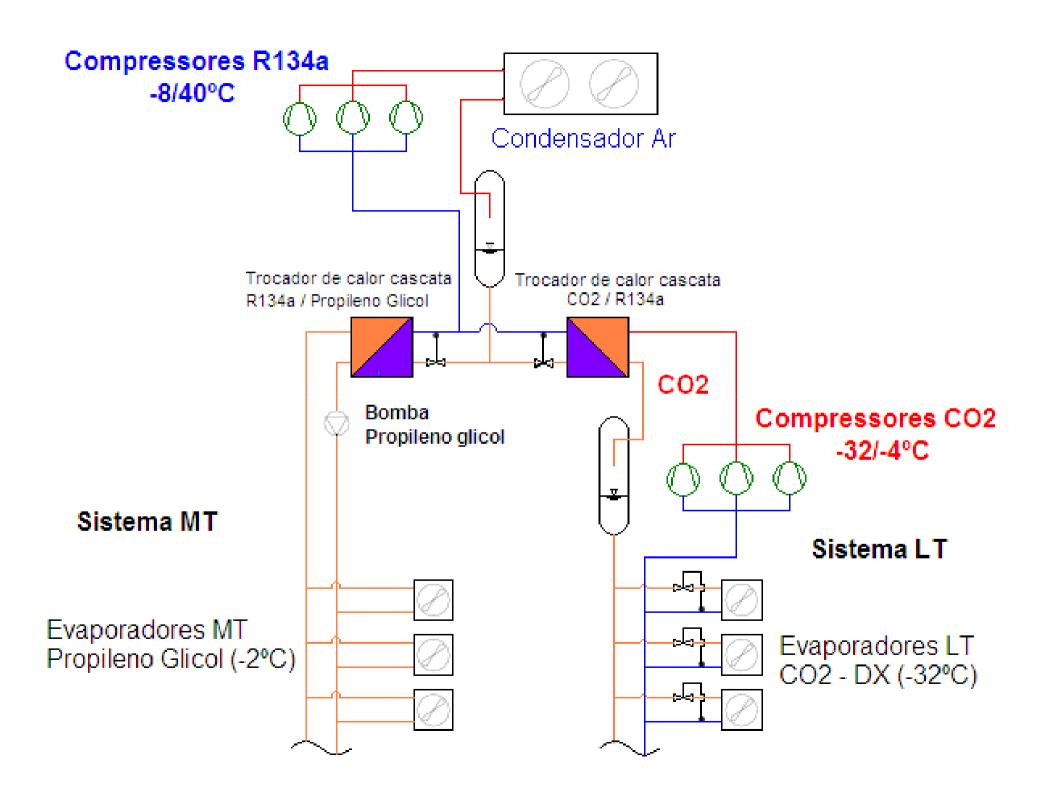

Tópico 4: Sistemas de Refrigeração com R744 Ciclo subcrítico

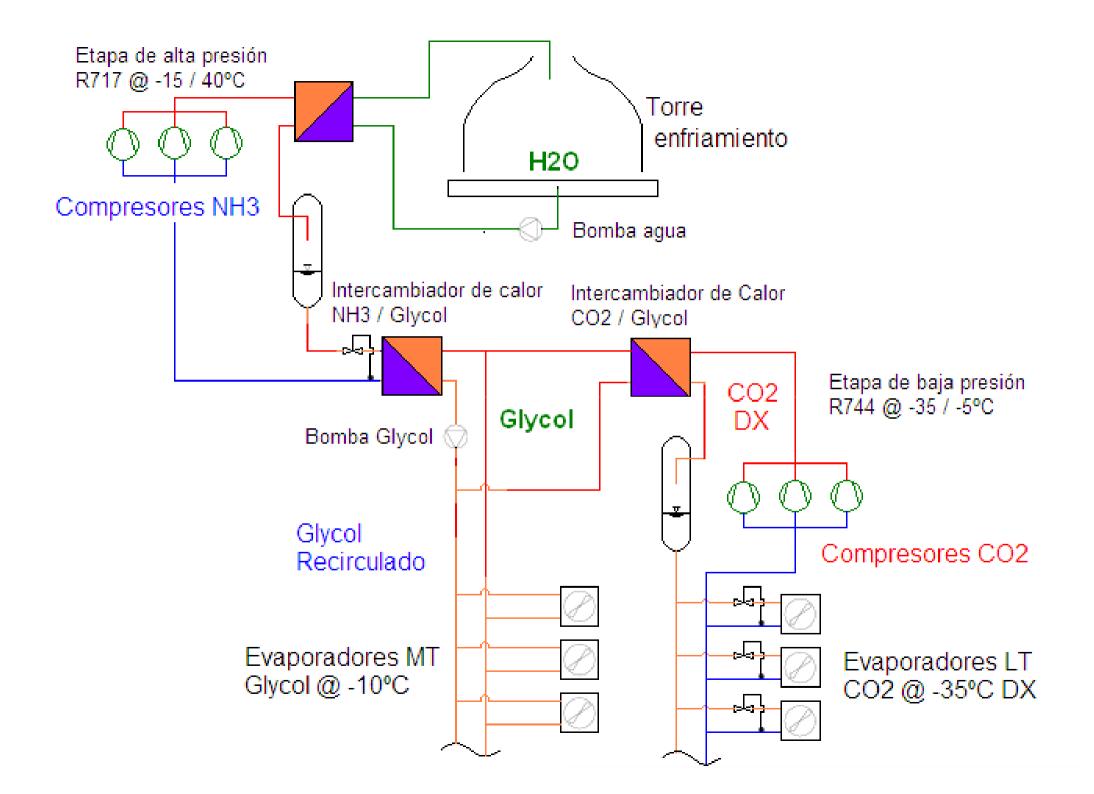

Tópico 4: Sistemas de Refrigeração com R744 Ciclo transcrítico

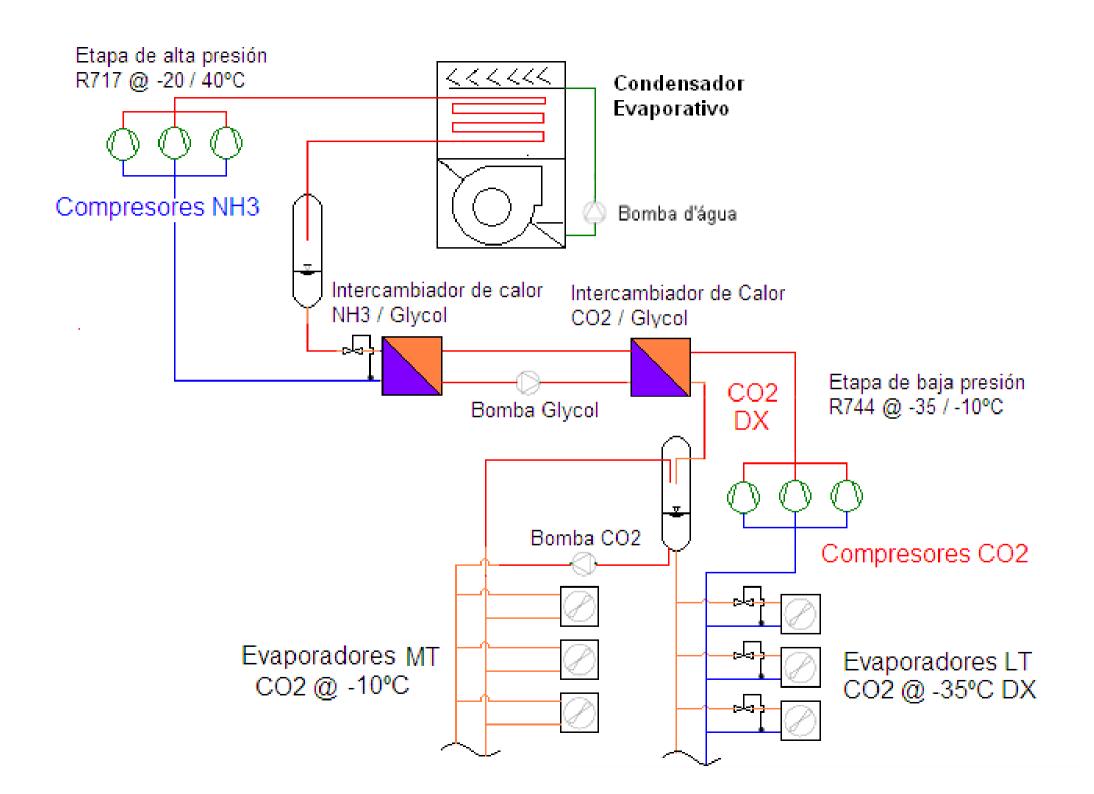
Tópico 4: Sistemas de Refrigeração com R744 Operação transcrítica e subcrítica

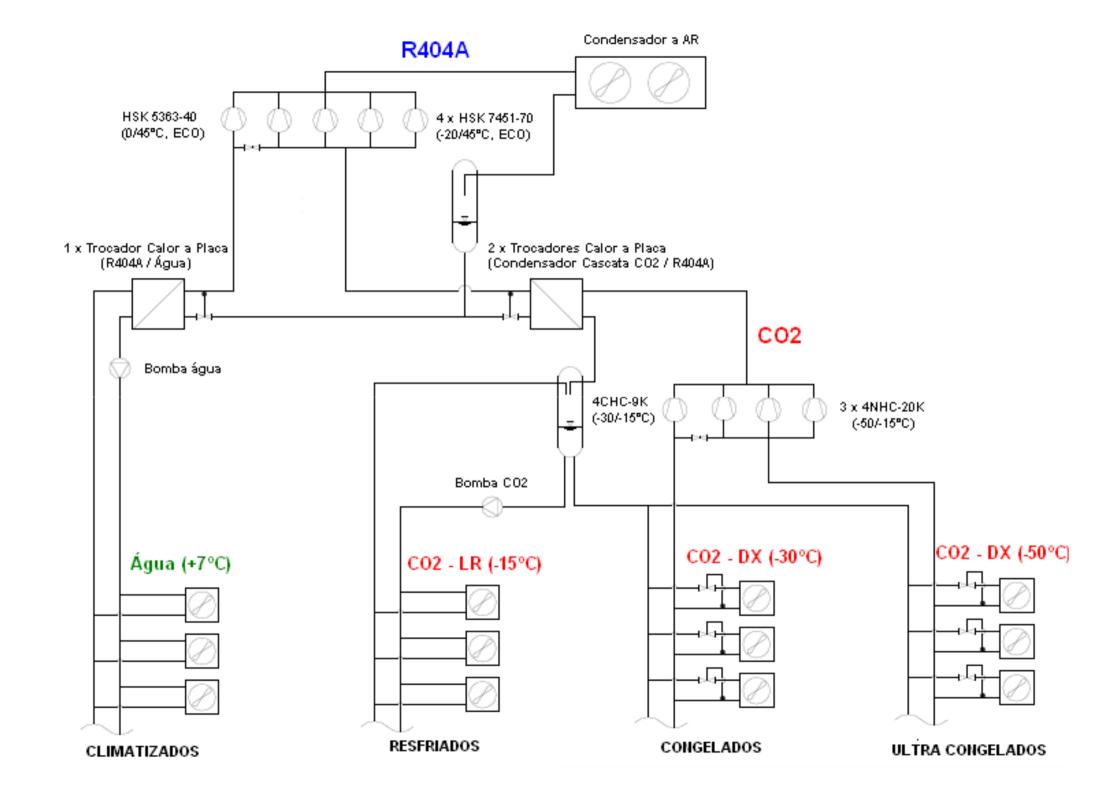


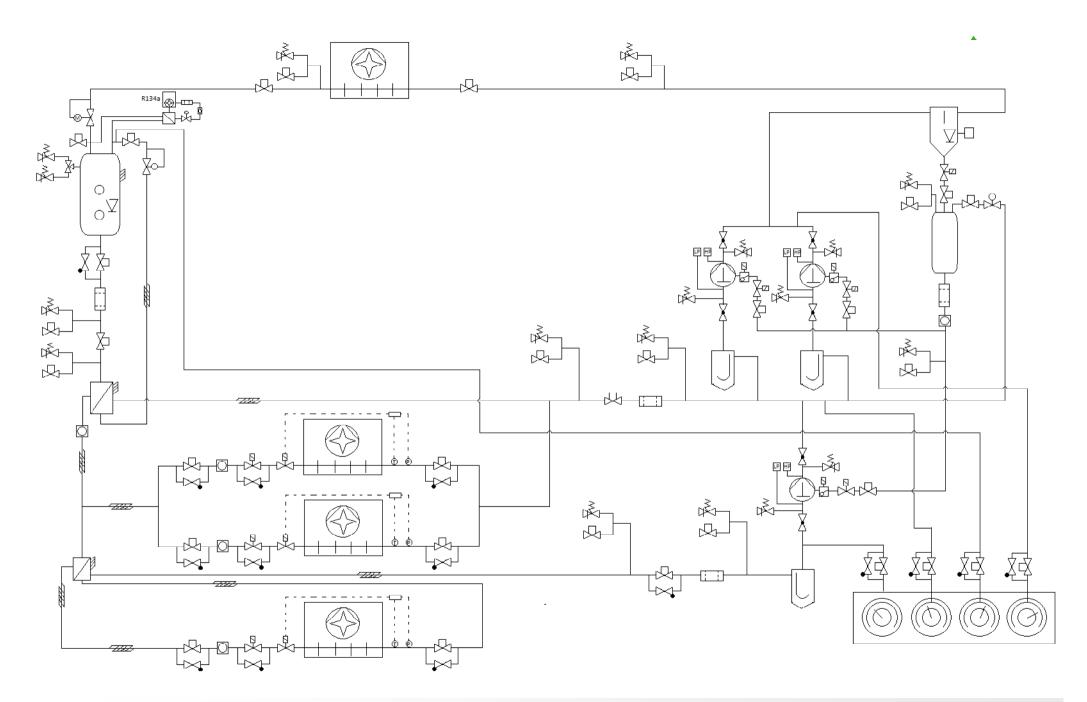






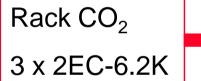

A seguir serão apresentados alguns <u>exemplos</u> <u>simplificados de Sistemas com CO₂</u>





A seguir serão apresentados alguns exemplos de Racks de Refrigeração com CO₂

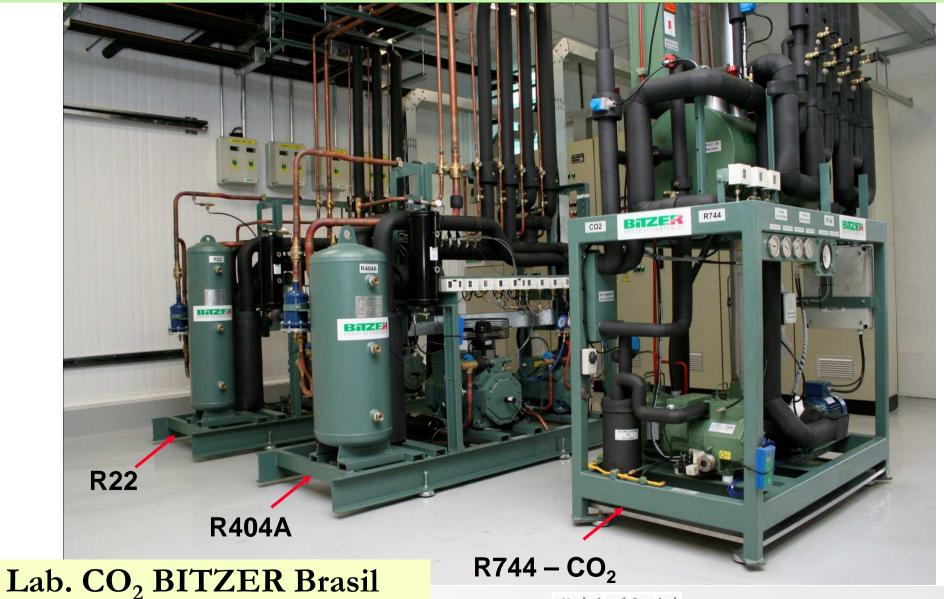
120 kW LT Etapa baixa CO₂ Etapa alta NH₃



© Danish Technological Institute, Teknologiparken, DK-8000 Aarhus C, www.teknologisk.dk

Rack R404A 3 x 4NC-12.2Y

Indústria de alimentos



 CO_2 : 4 x 2KHC-05.2K @ -30 / -5°C(Q_{LT} = 20Kw; Q_{MT} = 100Kw)

R404A: 4 x 4NC - 20.2Y @ -10 / 40°C

Centro de distribuição de alimentos

Rack compressores Octagon (CO₂)

•

Rack compressores parafusos (R134a)

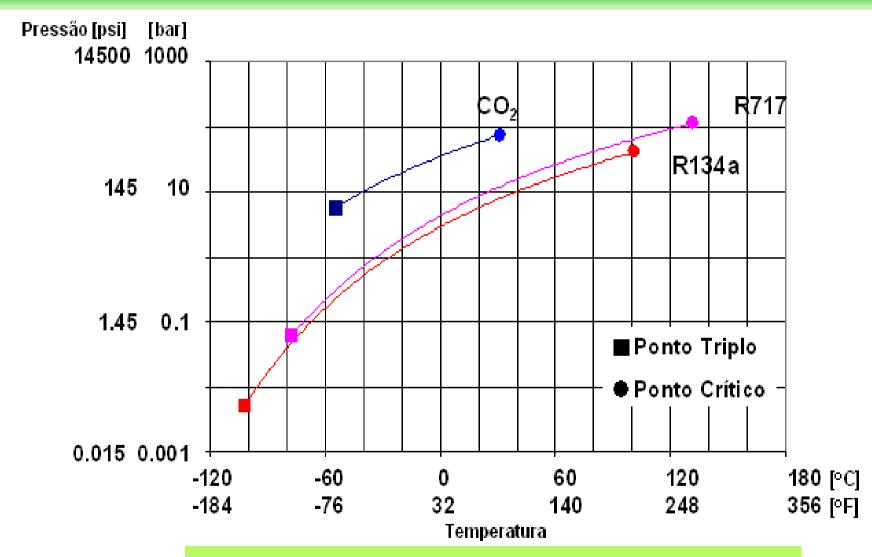
Supermercado

Rack compressores parafusos (NH₃)

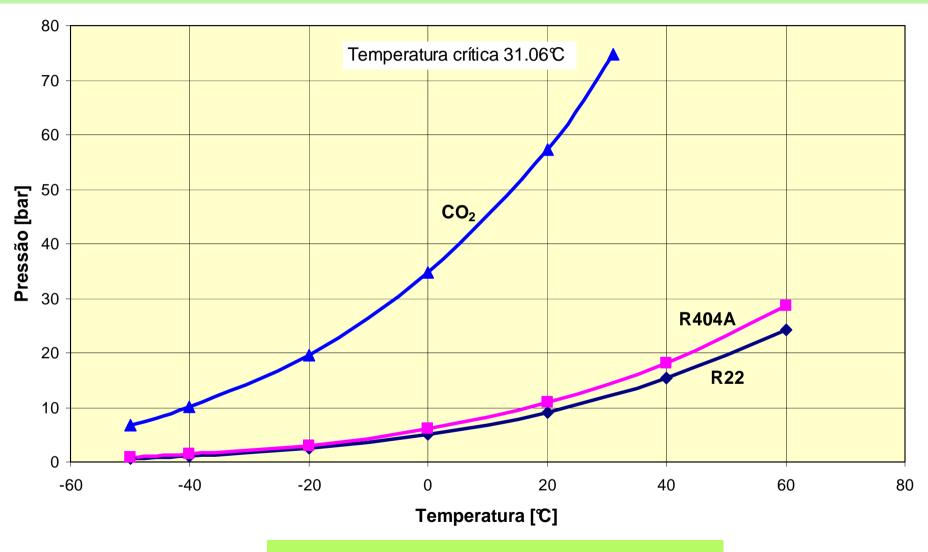
Rack compressores Octagon (CO₂)

Supermercado

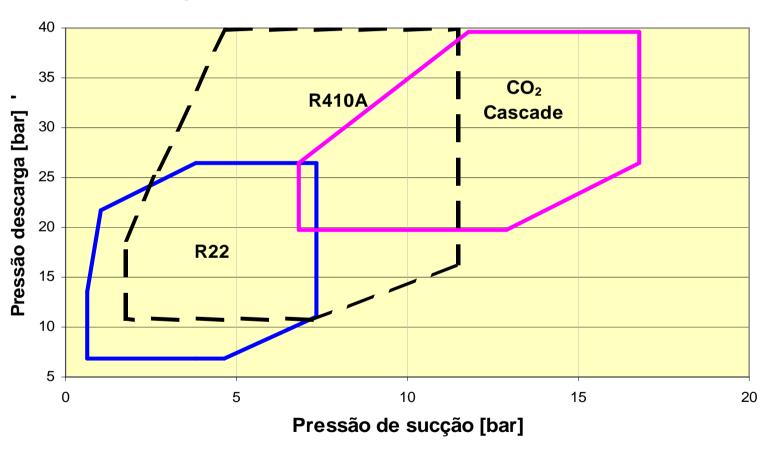
compressores Octagon (CO₂)


Compressores R134a

Componentes do Sistema de Refrigeração com R744 (CO₂)



Comparação da pressão e temperatura dos refrigerantes



Nível de pressão do CO₂ vs. R22 e 404A

Comparação dos níveis de pressão CO2 & R410A vs. R22

□ VÁLVULAS SOLENÓIDE

- Necessário major MOPD
- Pode ser usada como bloqueio ou como Válvula Expansão pulsante

□ VISORES DE LÍQUIDO

- Necessário maior Pressão Trabalho
- Pode ser usado com pastilha higroscópica para indicação de umidade

□ FILTROS SECADORES

Necessário maior Pressão Trabalho

O elemento dissecante absorve a água do refrigerante (Molecular Sieves)

Molecular Sieves nos A tela retém as partículas sistemas CO₂

sólidas

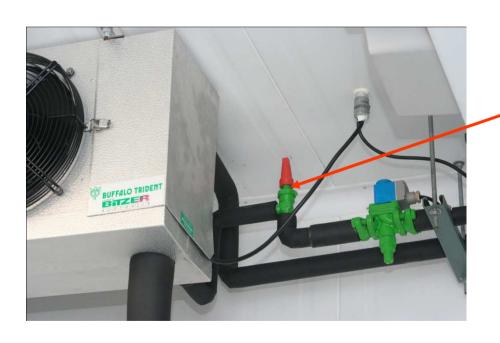
□ FILTROS SECADORES

Evitar o aprisionamento CO2, utilizar válvula de retenção paralela à válvula de bloqueio.

□ TRANSDUTORES DE PRESSÃO

- Necessário maior range de pressão
- > Necessário alta confiabilidade
- Necessário alta grau de precisão

Transdutor de Pressão Carel – CO₂ 4 a 20mA (SPKT*C*)


Transdutor de Pressão Carel- CO₂ 0 a 5V Ratiométrico (SPKT**RO)

□ VÁLVULA DE EXPANSÃO MANUAL

Válvula de expansão manual

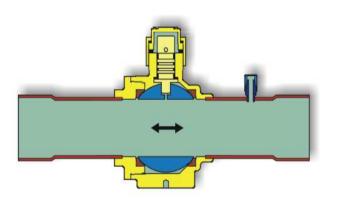
Válvula expansão manual Danfoss para CO2

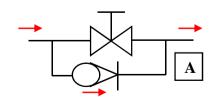
Válvula de expansão manual Hansen para CO2

□ VÁLVULAS DE EXPANSÃO ELETRÔNICA

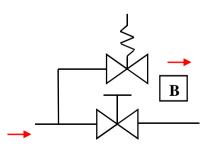
Válvulas de expansão eletrônica

Válvulas de expansão pulsantes

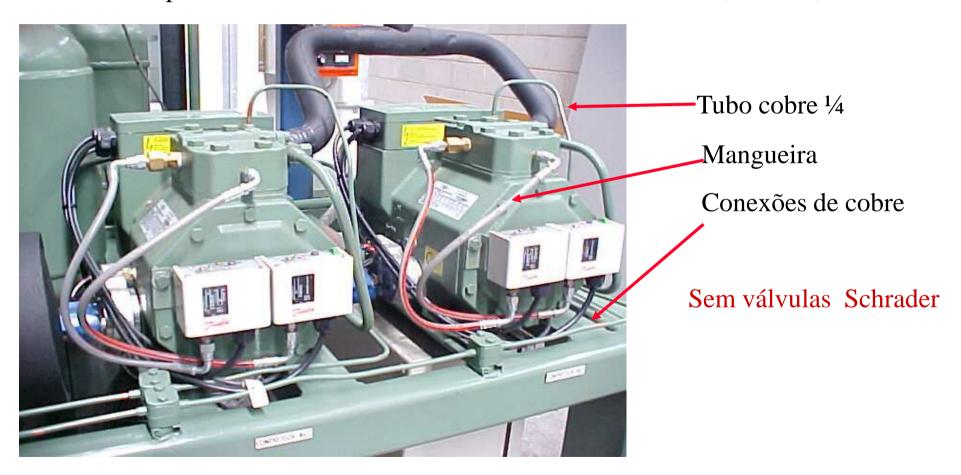

□ MPXPRO – VÁLVULAS DE EXPANSÃO ELETRÔNICA CAREL



□ VÁLVULAS DE BLOQUEIO


- Remover a válvula schrader, se houver
- Para evitar o aprisionamento do CO2 em qualquer ponto do sistema, recomenda-se instalar uma válvula de retenção paralelo a válvula.

(A) Válvula de bloqueio + Válvula de retenção.


(B) Válvula de bloqueio + Válvula de segurança.

□ CONTROLES DE PRESSÃO E CONEXÕES

Os controles poderão ser do mesmo material utilizado com o R22, R404A, etc.

□ VÁLVULAS DE SEGURANÇA

- ➤ Nunca instalar nenhuma tubulação após a válvula de segurança, perigo de congelamento (gelo seco CO2) no interior do tubo!
- > Deverá ser válvulas para gases criogênicos
- ➤ Deverá proteger o lado de alta e baixa pressão do sistema

□ VÁLVULAS DE SEGURANÇA

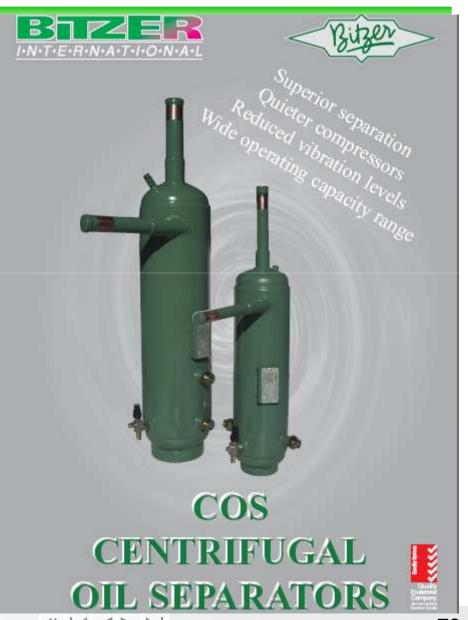
Aliviar a pressão nos possíveis pontos onde poderão aprisionar o CO2

□ VÁLVULAS DE SEGURANÇA

Válvulas segurança CO₂ instaladas no Rack

Válvulas instaladas no lado de fora da sala de máquina

□ COMPRESSORES OCTAGON® CO₂



□ SEPARADORES DE ÓLEO

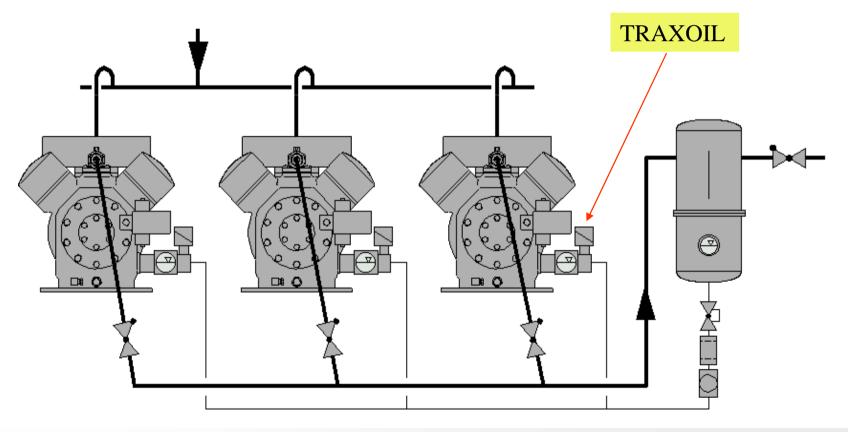
Separadores Centrífugos série COS: (separador + pulmão de óleo)

Para selecionar os separadores de óleo, precisamos saber os seguintes dados:

- Capacidade frigorífica (kW)
- Temperatura de evaporação (°C)

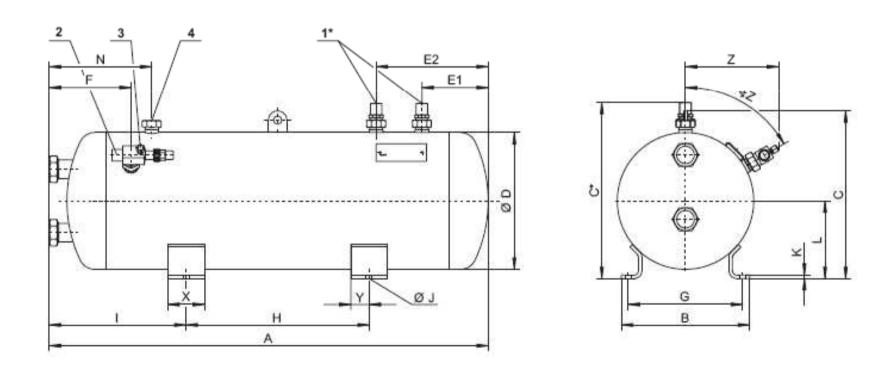
□ SISTEMAS DE CONTROLE DE NÍVEL DE ÓLEO DO COMPRESSOR CO₂

Para controlar o nível de óleo do cárter do compressor, recomenda-se utilizar controle de nível de óleo ELETRÔNICO



TRAXOIL BITZER MODELO TR3

□ SISTEMAS DE CONTROLE DE NÍVEL DE ÓLEO DO COMPRESSOR CO₂


Exemplo simplificado de equalização de óleo nos cárteres utilizando TRAXOIL BITZER.

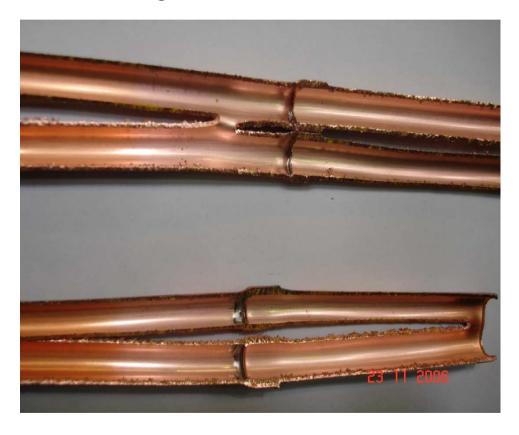
□ VASOS DE PRESSÃO PARA SISTEMAS DE REFRIGERAÇÃO COM R744

Tanque de líquido horizontal para CO2 subcrítico Bitzer série K:

Maiores informações ver catálogo DP-321-1

□ TROCADORES DE CALOR

Exemplo de aplicação com RL para média temperatura com CO2


O processo de soldagem (brasagem) da tubulação deve ser realizado sempre com a passagem de nitrogênio através do tubos com uma pressão de aprox. 1 a 2psig. Assim evitaremos a formação dos resíduos (óxidos) de cobre indesejáveis ao sistema.

O regulador de pressão é um aparelho pneumático projetado para reduzir a pressão do cilindro para uma pressão definida de uso e mantê-la constante, mesmo com grande variação na pressão de entrada e na vazão de saída do gás.

Soldagem com fluxo de N2

Soldagem resistente; isenta de vazamentos. Interior dos tubos isento de óxidos de cobre.

Soldagem sem fluxo de N₂

Soldagem "fraca"; possibilidade de vazamentos. Interior dos tubos com muito óxidos de cobre.

Procedimentos de Comissionamento, Serviço e Manutenção com R744 (CO₂)

etc.)

FERRAMENTAS PARA TRABALHAR COM O REFRIGERANTE R744

Conjunto Manômetros igual para o R410A
Mangueiras que suportam pressões acima de (25Bar lado de baixa pressão, 40Bar lado de alta pressão)
Bomba de vácuo de duplo estágio
Vacuômetro eletrônico (para medir nível de vácuo de 500 microns)
Termômetro, Sensor de CO2 portátil, Multímetro (amperímetro, voltímetro,

FERRAMENTAS PARA TRABALHAR COM O REFRIGERANTE R744

MANIFOLD

O MESMO PARA R410A

Lado Alta = 5500 kPa

Lado Baixa = 3500kPa

FERRAMENTAS PARA TRABALHAR COM O REFRIGERANTE R744

☐ Mangueiras de serviço

- ☐ Maior pressão de segurança e ruptura
- SWP 5500 kPa (800 psi)
- Ruptura 27,5 MPa (27500 kPa, 3900 psi)

FERRAMENTAS PARA TRABALHAR COM O REFRIGERANTE R744

BOMBA DE VÁCUO

 O poder higroscópico dos óleos POE exige boas técnicas de evacuação

Desidratação & evacuação nos níveis necessários é essencial – $1000 \, \mu$ – muitos fabricantes recomendam um nível menor que $500 \, \mu$.

FERRAMENTAS PARA TRABALHAR COM O REFRIGERANTE R744

VACUÓMETRO ELETRÔNICO

	Un	Temperatura de Ebulição de água				
Pol. de Hg	mm de Hg	Lb./pol ²	Torr	μ Hg	°C	°F
0,000	0	14,7000	760,000	-	100	212
15,000	380	7,4000	380,000	-	82	179
26,000	660	1,9000	100,000	-	52	125
27,000	684	1,4000	76,000	-	46	115
28,000	711	0,9500	76,000	-	46	115
28,000	711	0,9500	50,800	50800	38	100
29,000	735	0,4900	25,400	25400	26	79
29,200	740	0,4000	20,800	20800	22	72
29,800	755	0,0900	4,579	4579	0	32
29,990	-	0,0050	0,250	250	-31	-25
29,996	-	0,0020	0,097	97	-40	-40
29,999	-	0,0005	0,025	25	-51	-60

FERRAMENTAS PARA TRABALHAR COM O REFRIGERANTE R744

TERMÔMETROS

Termômetro digital

FERRAMENTAS PARA TRABALHAR COM O REFRIGERANTE R744

SENSOR CO₂ PORTÁTIL

Sensor de CO₂ portátil

- ☐ Recomenda-se que o <u>técnico responsável pela</u>

 <u>manutenção</u> tenha sempre disponível um <u>detector portátil</u>

 para monitorar o nível de CO₂ nos ambientes.
- ✓ O sensor de CO_2 deverá ter uma faixa de 1 10.000 ppm

FERRAMENTAS PARA TRABALHAR COM O REFRIGERANTE R744

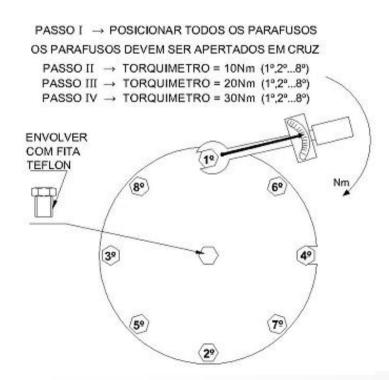
ALICATE AMPERÍMETRO E MULTÍMETRO

FERRAMENTAS PARA TRABALHAR COMO REFRIGERANTE R744

AQUECEDOR INDUSTRIAL

Exemplo de aplicação:

Esquentar as tampas e carcaças dos filtros de sucção, filtros da linha de líquido, etc..para evitar a condensação da água (umidade dentro do sistema) durante os serviços & manutenção do sistema..



FERRAMENTAS PARA TRABALHAR COM O REFRIGERANTE R744

TORQUÍMETRO

Exemplo de aplicação:

Troca do filtro da linha de líquido, sucção, etc..

TÉCNICAS DE TESTE DE PRESSÃO NO SISTEMA

☐ Pressões maiores são necessárias para o R744 do que para sistemas com R22.

✓ R22: 2250 - 2500 kPa.

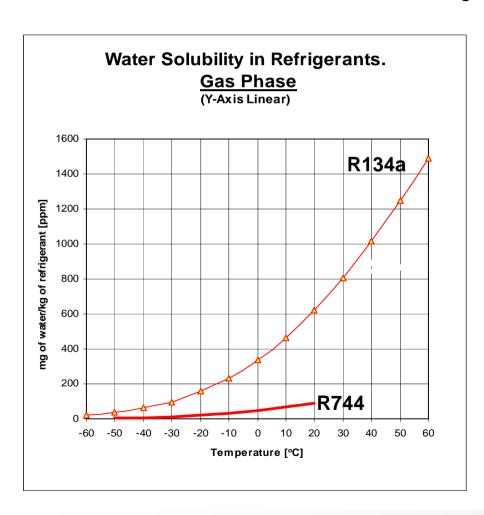
✓ R744: 2500 kPa LT & 4000 kPa HP

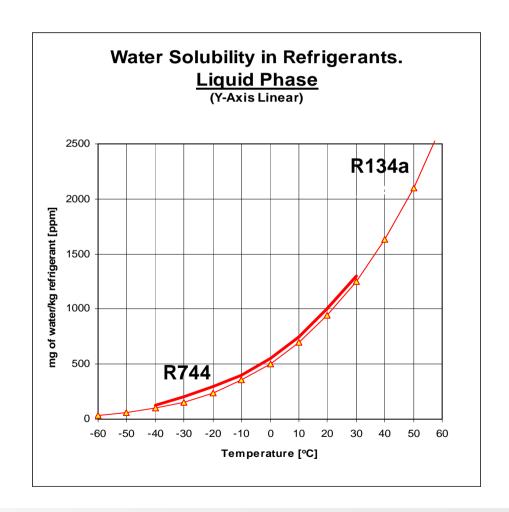
☐ Utilizar um regulador de 2-estágios no cilindro de Nitrogênio (seco).

TÉCNICAS PARA DETECÇÃO DE VAZAMENTO DE REFRIGERANTE

 \square O R744 é um refrigerante natural, portanto utilizar bolhas de sabão ou um detector eletrônico sensível de CO_2 .

□ O R744 tem un tamanho molecular muito pequeno, sua fuga do sistema será mais fácil comparada com outros refrigerantes como R22, R404A, etc.




TÉCNICAS DE EVACUAÇÃO & DESIDRATAÇÃO

- ☐ Utilizar uma bomba de vácuo de duplo-estágio e vacuômetro eletrônico de boa qualidade.
- ☐ Retirar as válvulas Schraeder para uma evacuação mais rápida.
- ☐ Evacuar o sistema ao nível recomendado, através de técnicas tripla ou profundas de evacuação.
- Alcançar o nível de vácuo correto, os fabricantes recomendam 500 μ para os refrigerantes HFCs & óleos POE.

TÉCNICAS DE EVACUAÇÃO & DESIDRATAÇÃO

TÉCNICAS DE EVACUAÇÃO & DESIDRATAÇÃO

- > O CO₂ é um refrigerante relativamente não reativo
- O conteúdo de água aceitável nos sistemas de refrigeração com CO₂ <u>é</u> muito menor que em outros sistemas com refrigerantes sintéticos
- ➤ "Todas" as reações com CO₂ necessitam da água para ocorrer
- Controlar o conteúdo de água nos sistemas com CO₂ é muito importante e necessário para evitar as reações químicas
- Em qualquer refrigerante, a água, oxigênio, óleo, óxidos, contaminantes e metais do sistema são os reagentes químicos mais importantes e, portanto, devemos ter muito cuidado!

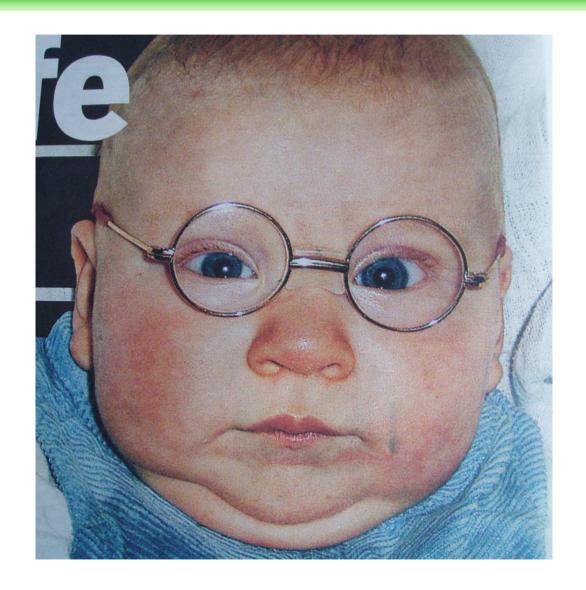
CARGA DE REFRIGERANTE NO SISTEMA

O CO₂ é fornecido em cilindro como o da foto ao lado, de 25 a 45 Kg.

Para grandes quantidades o CO₂ também poderá ser fornecido em mini tanques equipados com bombas de líquido que pode ser conectada diretamente ao sistema. Porém, nesse caso a pressão do sistema deverá estar abaixo da pressão do tanque.

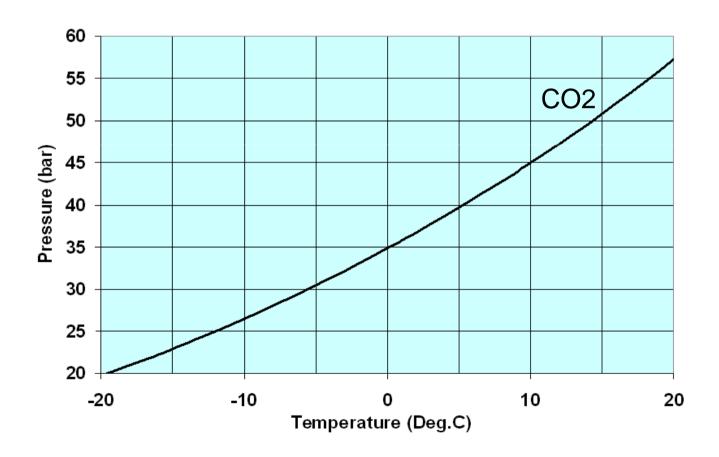
CARGA DE REFRIGERANTE NO SISTEMA

A mangueira de carga de refrigerante com CO₂ ficará bem fria e mais frágil em baixas temperaturas



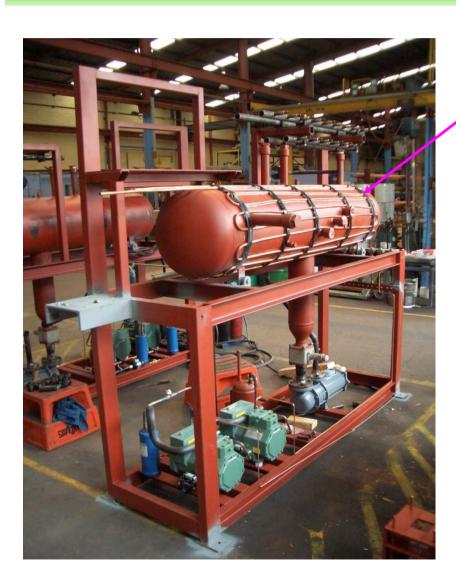
Um assunto muito importante...

...Parada do sistema com R744 (CO2) por longo período do tempo



Vamos olhar mais de perto o que acontecerá se a instalação ficar fora de operação por um longo período de tempo devido à falta de energia elétrica / parada do sistema com R744 (CO2)!

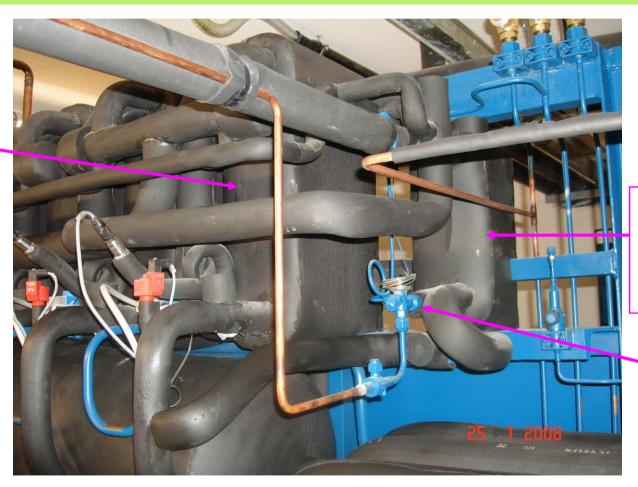
Devemos pensar na proteção do sistema contra eventuais problemas relacionados com a falta de energia elétrica ou falha no estágio de alta pressão.



Métodos aplicados para manter o CO2 "frio" dentro do tanque de líquido:

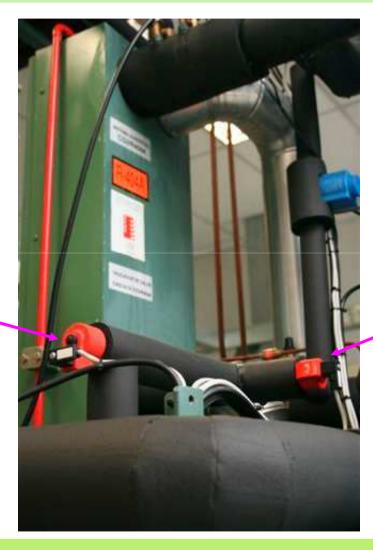
- ☐ Unidade de emergência (Unidade Condensadora) conectada a uma serpentina instalada para refrigerar o tanque de líquido – acionada por um gerador elétrico Unidade de emergência conectada a um trocador a placa independente para refrigerar o tanque de líquido – acionada por um gerador elétrico Unidade de emergência conectada no trocador "cascata" para refrigerar o tanque de líquido – acionada por um gerador elétrico Conectar o gerador somente no estágio de alta pressão para refrigerar o tanque de líquido. Instalar o tanque de líquido dentro de uma câmara de congelados.
- Acionar todo o sistema (estágio de alta e baixa pressão) caso o gerador tenha capacidade suficiente.

Serpentina para resfriamento do tanque


Depois executar a isolação

Detalhes dos trocadores de calor cascata – tipo placa

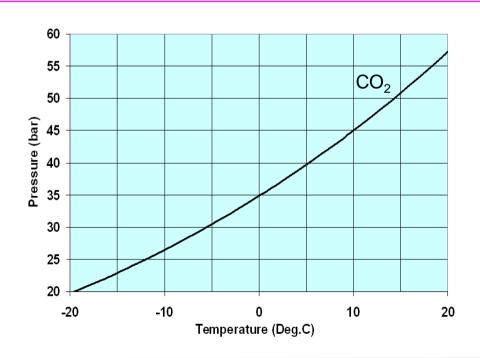
Trocador calor cascata


Trocador calor adicional – conectado na UC

VET

Válvula de expansão eletrônica Carel do Estágio de Alta Pressão

Válvula de expansão eletrônica Carel da Unidade de Emergência


Trocador calor cascata do Centro de Treinamento & Tecnologia CO2 - Bitzer

Tanque líquido CO₂ instalado dentro câmara congelados:

Evitará o aumento da pressão do sistema, pois o tanque estará frio no interior da câmara.

